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MEASUREMENTS OF THE DYNAMIC COMPLEX YOUNG'S AND SHEAR
MODULI OF CHLOROTRIFLUOROETHYLENE (KEL-FO)

USING A RESONANT BAR TECHNIQUE

INTRODUCTION

Chlorotrifluoroethylene (CTFE Kel-FD) is a candidate material for acoustic sensors
employing fiber optic interferometry hnd polyvinylidene fluoride (PVDF) piezoelectric-based
detection. The motivation in investigating CTFE for underwater acoustics applications is its
relatively low acoustic wave speed as compared with that of the surrounding medium (sea water)
and alternative transducer materials (e.g., polycarbonate, metals). This feature may be of
practical and operational importance in the actual implementation of a sonar array. C1 also
appears to offer a low elastic modulus that will result in high acoustic sensitivity, which is
proportional to the strain per unit pressure generated in the transducer in both fiber optic
interfeomaey and PVDF-based detection. A summary of typical properties of CIM plastics is
included in appendix A.

However, the temperature and frequency dependence of the dynamic elastic properties of
Kel-F is not known. While static Young's modulus is typically available, manufacturers do
not, in general, provide dynamic mechanical property data for their products. This investigation
was initiated to ensure that acoustic sensors made from this material have sensitivities that are
sufficiently independent of temperature and fequency.

The report describes the determination of the elastic properties of CTFE Kel-F* by
m rement of the resonant modes of a sample bar of the material. The "fiee-free" bar was
selectively excited in its fiexinl, torsional, and longtudinal vibrational modes with a transducer
consisting of coils of magnet wire placed in the magnetic field created by a pair of permanent
magnets.'- 3 The resonant modes were electrodynamically detected by use of a second coil
located at the opposite end of the sample. The bar was placed on a pair of soft rubber bands so
that the ends were free to move. The square of the detected frequency of the flexural and
longitudinal resonant modes is proportional to the Young's modulus; the square of the frequency
of the torsional modes is proportional to the shear modulus. Tbe quality factor, or Q, of the &0.
resonant modes is equal to the ratio of the real to imaginary parts of the complex moduli and the 0
inverse of the characteristic loss tangent. The modulus that is obtained is a dynamic complex

modulus at the frequencies corresponding to the fundamental bar resonance and its overtones.
Am ts of Kel-F* were taken in Code 4211 at the New London Detachment of the Naval

Undersea Warfare Center, Division Newport. ads@
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EXCITATION AND DETECTION

The differential Lorentz force, dF, produced on a segment of wire, dl, carrying a current, I, in

a static magnetic field, B. is given by

dF =Id× XB. (1)

As described in the Introduction, longitudinal, torsional, or flexural forces can be generated in
order to selectively excite each of the three vibrational modes. The paricular mode excited depends
on the relative positioning of the wire coils carrying the current, I, and the direction of the magnetic
field. Typically, the magnetic field direction and strength created by the pair of permanent
magnets, as well as the current driven through the coil of wire, are constant and independent of
frequency. When the frequency of the oscillator driving, the wire coil is varied, the bar is excited
in its characteristic resonant modes of vibration. The detection of these modes is accomplished by
placing the second wire coil at the opposite end of the bar within the magnetic field created by a
second pair of permanent magnets. The voltage output of the wire transducer is an electromagnetic
force (EMF, which is proportional to the change in magnetic flux linking the coil and is given by

v=- B dA (2)

For a small segment of wire moving with velocity u in a magnetic field B, the induced EMF is
givenby

V-B lxu (3)

The HP3562 (dynamic signal spectrum analyzer) was used in a swept sine mode in the
appropruae fequency range to excite each mode of vibration. The experimental setup is illustrated
in figure 1. The resonances were determined from the displayed frequency response and the
quality factors from the frequency/damping special cursor feature of the analyzer.

TIEORETICAL RESONANCE FREQUENCY

Once the resonances have been determined and the dimensions and density of the bar
measured, the a opiate moduli can be calculated from the equations presented in this section. A
uniform, cylindrical rod-shaped sample of a homogeneous, isotropic solid having circular cross-
sectional diameter, d, and length, L, (which is significantly greater than its diameter) will propagate

*• three independent waves if its wavelengths, X, are much greater than d.
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H-P3562A SIGNAL ANALYZER

z1. Measuremnt Setup for the Elecrodynamic Excitation and Detection of Modes of a Bar

The displacements associated with the longitudinal and torsional modes satisfy a partial

second-order wave equation, and for a free-free boundary condition, the resonances are

y related. The Young's modulus can be expressed as

E.= 4pL2 (f)2', (4)

where n is a positive integer, % is the resonance frequency of the nth mode, and p is the density of

the sample bar. Similarly, the shear modulus can be expressed as

G = 4pL2 (-f . (5)

The measurement of the flexural mode provides a second measure of the Young's modulus,

and its fundamental frequency is typically an order of magnitude lower than the longitudinal

modes. The flexural waves of the bar obey a fourth-order differential equation, and the flexural

wave phase speed is dispersive. The application of "free-free" boundary conditions in this case

leads to a series of modes that are overtones but not harmonics. The Young's modulus can be

-xp---d in terms of the flexural modes (where 1 is equal to 3.011, 5, 7, 9, 11, and so forth) as

f (6)
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MEASUREMENTS AND RESULTS

The sample bar of Kel-FI had a 1.274-cm diameter, 30.80-cm length, and 2020-Kg/m 3

density. The bar weighed 79.3 gin without the added 1.3-gm mass of two transducer coils and
epoxy. The transducer coil length was approximately 2.5 cm. The flexural, torsional, and
longitudinal modes were clearly detected from the transducer coil output. Data were obtained at
room temperatures of 240 ± 10 C and 00 ± 50 C. The large uncertainty in the low temperature is
due to fact that the sample was tested in the open laboratory after it was cooled in and removed
from a small environmental chamber. The complex shear and Young's moduli corresponding to
these resonances are tabulated in table 1.

Table 1. Summary of the Frequencies of the Modes of Vibration and
Corresponding Elastic Moduli of the CTFE Sample Bar

Mode # Frequency Freq/Mode # Quality Factor Modulus
[n] [fn] (Hz) [fd/n] (Hz) [Q]

Torsional T = 240 ± 10 C (shear modulus)
1 1000 1000 15 0.766 GPa
2 2067 1034 9 0.819 GPa
3 3099 1033 14 0.817 GPa

Torsional T = 00±50 C (shear modulus)
1 1127 1127 9 0.97 GPa
2 2308 1154 1.0 GPa
3 3533 1177 1.1 GPa

Longitudinal T=00±50 C (Young's modulus)
1 1766 1766 2.4 GPa

Fleaural T = 240 ± 10 C (Young's modulus)
(3.0112)2 120 13.2 10 2.0 GPa
(4.9994)2 332 13.3 2.0 GPa

Fleural T=00±50 C (Young's modulus)
(3.0112)2 130 14.6 10 2.4 GPa

4



CONCLUSIONS

The Young's modulus varies 1.6 dB over the temperature range from +24" C (2.0 GPa) to
0* 1 5 C (2.4 GPa) as obtained from the data of the flexural resonant modes. The Young's
modulus was also determined to be 2.4 GPa 0 ± 50 C from the longitudinal modes. The shear
modulus varies 2.0 dB over the temperature range from +24" C (0.77 GPa) to 0 ± 5" C (0.97 GPa)
as determined from the data of the torsional resonant modes. Frequency response data for the
CTFE bar at various temperatures are presented in appendix B of this report. Corrections for
transducer mass and stiffness loading were not presented in this analysis. However, these
corrections are expected to change the results by less than 5 percent.

The sensitivity of a fiber optic interferometric mandril hydrophone is expected to vary with
temperature to the same magnitude as the elastic modulus. This is due to the fact that the sensitivity
is proportional to the strain in the mandril and the strain is inversely proportional to the elastic
modulus.
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APPENDIX A

CHLOROTRIFUOROETHYLENE (KEL-F®)
MANUFACTURER'S PRODUCT DATA SHEET
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KEL-FO CTFE
CHLOROTRIFLUOROETHYLENE
KeI-F 611 th e homopolymerw of whlrotI -oofhln (CTFE)
manuactured by 3M. This fluoropolyme possesses a number
of properties not usually fou ind m 0w flucropymer resin.
Examples ol thes properIes are optfical taranparency. high
hardnkess, high cornpressiv stregth ad an exceptional tsils.
tWmc Io cold flow.
"WhA* CTFE dons deform slghtly ~ne load. ft exhWIbs excellent
elaStc memory aMd wil recove when the load is removed. AS
with most themopastcs, fts physca strength will decrease as
mhe t"empeaure inceases.
Because It is a highl fuorinted resin, CTPE is non-flammabl
and relativey unaffected by most corrosive chemi~cals. CTFE
maintain fts excellent eleectria insulatng capabilly thro*g
themal "ycin and high umidfty. Rt has excellnt cut-twough
ressance rmains flexible, and can be bentl wWWou crackin
at extremely low wempeature.
CTFE offers tigh optical tranmittanc, low haze and low gas
and moigstur vapor transmision. ft also exhibits nan-wefttin
and zeoM moisture abeOrptlon. Uts dimnswiona stabfty is unasf-
facted by high humidity and underprolnged immersion in wate.
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APPENDIX B

FREQUENCY RESPONSE DATA FOR THE TORSIONAL,
LONGITUDINAL, AND FLEXURAL RESPONSE OF

KEL.F® BAR AT VARIOUS TEMPERATURES
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GLOSSARY OF NOMENCLATURE

Fh Frequency harmonic

D Damping

Ya Amplitude corresponding to round cursor

x Frequency corresponding to round cursor
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